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For Home sapiens, the flows are
regulated by ethical, social, and - recently -
economic rules
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Trajectories of the Earth System inthe %
Anthropocene

Will Steffen, Johan Rockstrom, Katherine Richardson, Timothy M. Lenton, Carl Folke,
Diana Liverman, Colin P. Summerhayes, Anthony D. Barnosky, Sarah E. Cornell,

Michel Crucifix, Jonathan F. Donges, Ingo Fetzer, Steven J. Lade, Marten Scheffer,
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PNAS published ahead of print August 6, 2018 https://doi.org/10.1073/pnas.1810141115
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Co-extinctions reduce the robustness of planetary life to catastrophe. Response of global diversity to environmental
change: progressive, monotonic increase (‘planetary heating’; left panel) or decrease (‘planetary cooling’; right panel)
trajectories in local temperature. Species either go extinct based only on their tolerance to environmental conditions
(‘environmental tolerance’ scenarios = blue curves), or where species go extinct not only when unable to cope with
changed environmental conditions, but also following the depletion of their essential resources (‘co-extinction’ scenarios
= magenta curves). Solid lines represent mean values, and shaded areas indicate the system boundaries (minimum-
maximum) arising from 1000 randomly parametrized models (see Methods for details). Dotted lines show the decline in
tardigrade’ (extremophile) species richness in the environmental tolerance (blue) and in the co-extinction scenario

(magenta) for both temperature trajectories. Strona and Bradshaw, 2018

https://www.nature.com/articles/s41598-018-35068-1
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The Ice Age The Present The Future?

During the Ice Age, many large mammals Since then, all the largest Surviving species will have to diversify for millions
roamed the earth, filling out deep species have been chopped off of years to restore this missing evolutionary
branches on the mammal Tree of Life the mammal Tree by extinctions history and regrow the Tree of Life

2 D .\\ M

o
o

) > ‘,',_'.'-’: G ‘

™ 3 . AT A
y ] 0 0 1 i ; i
c c § S E’ I l J | ! i i
31 | €] sl Tl F ! j i | 1 | i

o Q = = - < i

S| 2| 2| 8| 2| & I . I .
- 2l O g 1| I 1 '
I . I N
I ] l l
4 4

Davis et al., 2018



‘Prognosis: Earth Needs Intensive Care

o)
-
-

o)
-
-

AN
-
-

o
-
-

N
-
-

A Present

Cumulative uptake [Pg C]

—k
-
-

-

Rothman, 2017



‘Prognosis: Earth Needs Intensive Care

Assessing the risk ...



‘Prognosis: Earth Needs Intensive Care

Assessing the risk ...

Global

Challenges
Foundation

Global Catastrophic Risks
2016

© Global Challenges Foundation/Global Priorities Project 2016

Insight Report

The Global Risks
Report 2017
12th Edition

WORLD
ECONOMIC
FORUM

N—

COMMITTED TO
LOVING THE STA

() NG THE STA
OF THE WORLD

THE COLLAPSE'0F™
WESTERN CIVILIZATION

A-VIEW ,OM THE FUTURE‘
['ORESKES an ERIK M.CONWAY




‘Prognosis: Earth Needs Intensive Care

Assessing the risk ... |
Plastics are

missing

Global

Challenges
Foundation

Global Catastrophic Risks cconomic |

COMMITTED TO,”
IMPROVING THE 8 o«
OF THE WO o

THE COOLLAPSEoF™™
WESTERN CIVILIZATION

A-VIEW OM THE FUTURE‘
RESKES'AND ERIK M.CONWAY
: .

Insight Report

The Global Risks
Report 2017
12th Edition

e
~NAUIVII U

\ -

A e AR A NN Y ‘ r W YAT LE L IATS Y IR [ ‘
\ ' ) } b, YA L] A7V T 7 3l

© Global Challenges Foundation/Global Priorities Project 2016




. Plastics

What are Plastics:

e Any of numerous organic synthetic or processed
materials that may be shaped when soft and then

hardened,;
e This property of plasticity, often in combination

with other special properties such as low density,

low electrical conductivity, transparency, and
toughness, allows plastics to be made into a
great variety of products.

e Many types of resins, resinoids, polymers,
cellulose derivatives, casein materials, and
proteins;

e Used in place of other materials, such as glass,
wood, and metals,

e Mostly thermoplastic or thermosetting polymers
of high molecular weight that can be made into
many objects, films, or filaments.

e Polymeric material that has the capabillity of
being molded or shaped, usually by the
application of heat and pressure.

Plastics are polymers: Long-chain molecules made of repeating links, ®*>00
or monomers. The chains are strong, light, and durable, which makes . @
them so useful—and so problematic when they're disposed ®@
of carelessly. The polymer here is PET, a type of polyester, r® 9o
the stuff of bottles and clothes. 9@
®
» @
Chemical reactions » ®
Heat, pressure, and ® o
catalysts drive reactions ‘ >
® o that link the monomers. |
e e ®
) ] ‘ Oxygen »e
®-® - o -9 ®
o ®®
» ® ® o
X A @e b
. : » ® O »
Simple links ®0 ’ X ‘. 7y : E
The monomers that are ‘ -
synthesized into plastics > P @ @
are usually derived from 5 ® . .
fossil fuels such as crude 99
oil and natural gas. ‘ D J
» @
-9
® »
J J ‘ ’
) °®
*®
. ‘ > ‘ .
> § P o
& End products
‘ ) > PET is one of the most
.y widely used polymers.
. K- ‘ Methanol, a by-product of
. 9 . v PET synthesis, is typically
9@ incinerated.
r @ 9o » @
o @ 9 ¢
. P J J J ) @
J . N ‘
> ® ) ;
J e K
®° » ¢
*®
9@

https://www.nationalgeographic.com/magazine/2018/06/plastic-planet-waste-pollution-trash-crisis/



. Plastics

Commodity resins;
¢ Plastics that are produced at high volume and low production cost for the most common disposable
items and durable goods.
e They are represented chiefly by polyethylene, polypropylene, polyvinyl chloride, and polystyrene.

Specialty resins:

¢ Plastics whose properties are tailored to specific applications and that are produced at low volume
and higher production cost.

e Engineering plastics: plastics that can compete with die-cast metals in plumbing, hardware, and
automotive applications.

e [mportant engineering plastics, less familiar to consumers than the commodity plastics listed above,
are polyacetal, polyamide, polytetrafluoroethylene, polycarbonate, polyphenylene sulfide, epoxy, and
polyetheretherketone.

e Thermoplastic elastomers: polymers that have the elastic properties of rubber yet can be molded
repeatedly upon heating.




‘Making Plastics

The process of making plastic is complicated (but low production cost):
¢ [t begins with carbon from petroleum, natural gas, coal, or biological sources.
¢ The elements can be combined in various combinations in order to achieve a desired property and
characteristic.

e Additives to arrive at a set of properties appropriate to the product: plasticizers, colorants,
reinforcements, and stabilizers.

e Plasticizers: change the Tg of a polymer.

e Colorants: most plastics are coloured: e.g., titanium dioxide and zinc oxide (white), carbon (black),
and various other inorganic oxides such as iron and chromium; organic compounds either as
pigments (insoluble) or as dyes (soluble).

¢ Reinforcements: used to enhance the mechanical properties of a plastic.

e Stabilizers: added, usually in small quantities, to counter the effects of aging. Other stabilizers are
designed specifically to reduce degradation by sunlight, ozone, and biological agents.

e \While most plastics are produced from petrochemicals, bioplastics are made substantially from
renewable plant materials such: as cellulose and starch
e Today, seven commodity thermoplastics account for ~85% of total plastics demand for use in virtually

all market sectors



lypes and Use Plastics

b) Industrial All Others Furniture &
a) Machinery e s 2% Furnishings
Q S e e = 0
1% 2% Electrical/
——~__Transportation Electronic
Other HDPE o 2%
thermoplastics, 16%
including PET
s Packaging Building &
35% Construction
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PVC Consumer &
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Supplemental Figure 1. (a) Percent distribution of U.S. production of plastic resins in 2014. HDPE = High
Density Polyethylene; LLDPE = Linear Low Density Polyethylene; LDPE = Low Density Polyethylene; PP =
Polypropylene; PS = Polystyrene; PVC = Polyvinyl Chloride; PET = Polyethylene Terephthalate. (b) Percent
distribution of U.S. resin sales and captive use of thermoplastics (all materials shown in top panel except

thermosets) according to major markets in 2014. Source: American Chemistry Council (2015). From
Lavender Law (2017)
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POLYURETHANE (PU) POLYCARBONATE (PC) POLYSTYRENE (PS)

POLYETHYLENE (PE) POLYPROPYLENE (PP) POLYVINYL CHLORIDE POLYETHYLENE TEREPHTHALATE BIODEGRADABLE
(PET) PLASTICS

https://www.plasticgarbageproject.org/en/plastic-life
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. Production and Use of Plastics

¢ Global plastics production has increased exponentially since 1950, with 311 million
metric tons produced in 2014.
e Substantial fraction of waste results from consumer plastics use (12.8% of municipal
solid waste by mass in the United States in 2013; US EPA 2016)
¢ Straightforward process of mechanical recycling of thermoplastics (grinding followed
by remelting into resin pellets; Andrady 2015),
e However, only an estimated 8.8% of postconsumer plastics were recovered for
recycling in the United States in 2012 (US EPA 2014).
¢ Plastics recycling rates are higher in Europe but still reached only 30% in 2014 (Plast.
Eur. 2015).
e Even in these highly developed countries with robust infrastructures, obstacles to
recycling occur at every step from discard to fabrication of new products:
¢ unavailability of collection points,
e contamination of recycling feedstock,
¢ imited marketability of the recycled material
Lavender Law (2017)




‘Production and Use of

400 million tons (Mt)

Total
f 448 million tons produced in 2015

A LIFETIME OF
PLASTIC

The first plastics made
from fossil fuels are just
over a century old. They
came into widespread
use after World War Il
and are found today in
everything from cars to
medical devices to food
packaging. Their useful
lifetime varies. Once
disposed of, they break
down into smaller
fragments that linger for
centuries.

JASON TREAT AND RYAN WILLIAMS, NGM STAFF
SOURCE: ROLAND GEYER, UNIVERSITY OF
CALIFORNIA, SANTA BARBARA

Growthin Asia —m——————

As the economies Iin Asia
grow, so does demand for
consumer proaQucis—=ana 400
plastics. Half the world’s

plastics are made there,

20 percent In China. 2008 recession

Global plastic
production by industry
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https://www.nationalgeographic.com/magazine/2018/06/plastic-planet-waste-pollution-trash-crisis/

2 million

AENRRRNERNRNERERENR ars

Transportation

30 million Build.+Const.: 72 Mt, 35 yrs
R Gy Industrial mach.: 3 Mt, 20 yrs
%‘-‘“{Iica' ~ Transportation: 30 Mt, 13 yrs
":“.;o.n. 8 yeans ~— Electrical: 19 Mt, 8 yrs
Tetil Textiles: 65 Mt, 5 yrs
6§x,:,'i|ﬁf,n Consum. prod.: 46 Mt, 3 yrs
HEREN 5 years Packaging: 161 Mt, <0.5 yrs
Consumer products

46 million

BBl 3 years

Packaging

|61 Mt < 6 months



. Production and Use of Plastics

Plastics consumption:
¢ In Western Europe, approximately 92 kilograms of plastic per capita are consumed annually, and

this quantity Is increasing.

¢ \Worldwide use per capita stands at about 35 kilograms.

e The largest amount of plastic waste comes from the packaging industry: two-thirds generated by
households and one-third by industry and commerce.

The “design of mobile food culture” is a visible expression of present-day society that always seems
to be on the way to somewhere, one characterized by “efficiency and convenience.”

Lifetime much longer than use time:

» Plastic Water Bottle - 450 years

* Disposable Diapers - 500 years

» Plastic 6-Pack Collar - 450 Years

» Extruded Polystyrene Foam - over 5,000 years

https://www.plasticgarbageproject.org/en/plastic-life



‘Microplastics

Microplastics:
e significant part of the plastic garbage problem
e smaller than 5 mm;
e the smallest particles found to date measure 10° m;
e enter the sea in various ways.

Microplastic

Can result from:

¢ plastic debris that disintegrates from the effects of friction and
UV radiation,

e Plastic pellets: raw material in the manufacture of plastic
products;

e Due to careless handling, for example during transport,
considerable quantities enter the environment.

e Textiles made of synthetic fibers such as polyester and
especially fleece lose up to 1,900 synthetic fibers with each
washing.

e Exfoliating products, many of which often contain small plastic
beads made of polyethylene, pose a similar problem.

These microparticles escape the filters in sewage treatment plants
and, suspended in wastewater, reach the seas through rivers,
pollute beaches.

https://www.plasticgarbageproject.org/en/plastic-life Accumulate as pollutants and enter the food chain.



‘Microplastics

“Solutions” that create new problems:

¢ [n 1993, Patagonia became the first outdoor gear company to
use recycled PET bottles to make some of its fleece garments.

¢ This environmentally conscious firm proudly states that this was
“a positive step towards a more sustainable system—one that
uses fewer resources, discards less and better protects
people’s health.”

e Since then, some 92 million PET bottles have been transformed
into articles of clothing.

e However, for many firms that produce fleece pullovers and
jackets, recent discoveries about microfibers in wastewater
present a challenge to take a further innovative step to protect
the environment.

https://www.plasticgarbageproject.org/en/plastic-life



Dead whale found with 115 plastic cups, 2 flip-flops
in its stomach

f ¥ & lin
Detritus also included more than 1,000 other plastic pieces, including plastic bags,

bottles

The Associated Press - Posted: Nov 20, 2018 9:03 AM ET | Last Updated: November 20

‘ »

ROBBIE GONZALEZ SCIENCE 10.22.18 06:00 PM

| YOUR POOP 1S PROBABLY FULL
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Plastics: A rapidly growing global challenge for
Earth's life-support system and humanity

e Plastics have many many advantages - can replace many other materials

e Current mainstream economic model allows for production-costs only, without considering
Impact-costs

e Production is rapidly increasing

® Single/one-time use is a major fraction

® There is no recycling, only down-cycling

e Plastics are everywhere

e Plastics are in everything

¢ Plastics impact ecosystems and accelerate extinction

® Microplastics are in all food chains

® There are many time-lagged impacts: land fills, built environment, coastal infrastructure

® Sea-level rise, climate change impacts (including storms, wildfires) can disperse plastics
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* The threat is mcreasmgly better understood .
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